Search results for "ultracold neutrons"
showing 10 items of 27 documents
A low-pass velocity filter for ultracold neutrons
2012
Abstract We have built a device to filter ultracold neutrons with axial velocities v n ≤ 8.0 m / s from faster neutrons. The apparatus has been successfully tested at the Institut Laue-Langevin in Grenoble and is used in specific experiments, e.g., the measurement of ultracold neutron transmission through various types of neutron guides.
New constraints on Lorentz invariance violation from the neutron electric dipole moment
2010
We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV.
Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins
2010
Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.
The n2EDM experiment at the Paul Scherrer Institute
2018
We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016.
A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI
2021
It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …
Constraining interactions mediated by axion-like particles with ultracold neutrons
2015
We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ~1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence o…
Constraint on the coupling of axionlike particles to matter via ultracold neutron gravitational experiment
2006
We present a new constraint for the axion monopole-dipole coupling in the range of 1 micrometer to a few millimeters, previously unavailable for experimental study. The constraint was obtained using our recent results on the observation of neutron quantum states in the Earth's gravitational field. We exploit the ultimate sensitivity of ultra-cold neutrons (UCN) in the lowest gravitational states above a material surface to any additional interaction between the UCN and the matter, if the characteristic interaction range is within the mentioned domain. In particular, we find that the upper limit for the axion monopole-dipole coupling constant is (g_p g_s)/(\hbar c)<2 x 10^{-15} for the ax…
A Revised Experimental Upper Limit on the Electric Dipole Moment of the Neutron
2015
We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_\mathrm{n} = -0.21 \pm 1.82 \times10^{-26}$ $e$cm, which may be inter…
Gravitational depolarization of ultracold neutrons : comparison with data
2015
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.
Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.
2015
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …